随着电力系统的发展,在供给侧,新能源逐渐成为装机和电量主体,煤电将逐步演变为调节性和保障性电源;在用户侧,参与主体兼具发电和用电双重属性,网荷互动能力和需求侧响应能力不断提升;在电网侧,配电网成为有源网,微电网、分布式能源系统、电网侧储能、局部直流电网等与大电网互通互济、协调运行。电力系统的技术基础、控制基础和运行机理深刻变化,平衡模式转变为源网荷储协调互动的非完全实时平衡。面对这些深刻变化,新型电力系统的建设面临不少挑战。
一、产品简介(WBYB-2000无线型带电氧化锌避雷器检测仪性能稳定,测量准确)
WBYB-2000氧化锌避雷器带电测试仪是用于检测氧化锌避雷器电气性能的专用仪器,该仪器适用于各种电压等级的氧化锌避雷器的带电或停电检测,从而及时发现设备内部绝缘受潮及阀片老化等危险缺陷。
仪器操作简单、使用方便,测量全过程由单片机控制,可测量氧化锌避雷器的全电流、阻性电流及其谐波、工频参考电压及其谐波、有功功率和相位差,大屏幕可显示电压和电流的真实波形。仪器运用数字波形分析技术,采用谐波分析和数字滤波等软件抗干扰方法使测量结果准确、稳定,可准确分析出基波和3~7次谐波的含量,并能克服相间干扰影响,正确测量边相避雷器的阻性电流。本机配有高速面板式打印机,可充电电池,试验人员在现场使用十分方便。仪器采用独特的高速磁隔离数字传感器直接采集输入的电压、电流信号,保证了数据的可靠性和保障性。
二、特点(WBYB-2000无线型带电氧化锌避雷器检测仪性能稳定,测量准确)
1、本机采用大屏幕液晶显示,全中文菜单操作,使用简便。
2、高精度采样、处理电路,先进的付里叶谐波分析技术,确保数据更加可靠。
3、仪器采用独特的高速磁隔离数字传感器直接采集输入的电压、电流信号,保证了数据的可靠性和保障性。
4、本仪器可以使用电场感应或无线传输方法代替PT二次接线。
5、本仪器可以不接PT二次,直接测量阻性电流。
6、本仪器共有六种测试方法,给测试人员提供了非常多的选择余地。(PT二次法,感应法,无线传输法,单电流同步法,pt二次同步法,无线同步法)
7、本仪器可以三相同测,自动补偿。使用特别方便
8、仪器配有可充电电池、日历时钟、微型打印机,可存储120组测量数据;
三、面板示意图(WBYB-2000无线型带电氧化锌避雷器检测仪性能稳定,测量准确)
面板说明:
1---参考电压输入端;2---天线;3---测量接地端;4---微型打印机;5---电源开关;6---充电插座;7---串口;8---泄漏电流输入端;9---液晶显示器;10—触摸键盘
四、主要技术参数(WBYB-2000无线型带电氧化锌避雷器检测仪性能稳定,测量准确)
1、全电流测量范围:0-10mA有效值
2、准确度:±(读数×5%+5uA)
3、阻性电流基波测量准确度(有线不含相间干扰):±(读数×5%+5uA)
4、电流谐波测量准确度:±(读数×10%+10uA)
5、电流通道输入电阻:≤2Ω
6、参考电压输入范围:25V-250V有效值
7、准确度:±(读数×5%+0.5V)
8、电压谐波测量准确度:±(读数×10%)
9、参考电压通道输入电阻:≥1800kΩ
10、电池连续工作时间:8小时以上
11、电池充电时间:6小时以上
12、交流充电:180V~270VAC,50Hz±1%,市电或发电机供电
13、仪器尺寸:32×27.5×14 cm
14、仪器重量:5kg(主机)
五、操作模式(WBYB-2000无线型带电氧化锌避雷器检测仪性能稳定,测量准确)
1.(PT二次)模式,(PT二次同步显示)模式:
仪器输入PT二次电压作为参考信号,同时输入MOA电流信号,经过傅立叶变换可以得到电压基波U1、电流基波峰值Ix1p和电流电压角度Φ。因此与电压同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p):Ir1p=Ix1pCOSΦ Ic1p=Ix1pSINΦ
考虑到δ=90°—Φ相当于介损角,直接用Φ评价MOA也是十分简捷的:没有“相间干扰”时,Φ大多在81°~86°之间。按“阻性电流不能超过总电流的25%”要求,Φ不能小于75.5°,可参考下表对MOA性能分段评价:
实际上Φ<80°时应当引起注意。
接地:
测量前先连接地线,测量完*后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
参考电压
参考电压信号线一端插入参考电压插座,另一端接被测相PT二次低压输出:小黑夹子接中性点(x),小红夹子接待测相电压(a/b/c)。外施法测量时接升压变压器的测量绕组。如果PT距离较远,可使用加长线。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:(图二)
2.(感应)模式(应客户要求定制):
在MOA底座上设置电场感应传感器,其感应电流超前电场强度(母线电压)90°,经过积分运算后与电场强度或母线电压同相位,因此可以用电场感应传感器的信号作为测量参考。仪器输入电场感应传感器信号,同时输入MOA电流信号,经过傅立叶变换可以得到电场基波E1、电流基波峰值Ix1p和电流电场角度Φ。与电场同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p),使用B相感应信号作参考。
因为A/C两个边相对B相底座的电场影响抵消,应将感应板设置到B相MOA底座上与A/C相相对称的位置,可以得到B相正确的相位信息。A/C相MOA底座电场受B相影响,不要将感应板设置到A/C相MOA底座上。
接线图如下:(图三)
3.(无线 传输)模式,(无线传输同步显示)模式:
仪器将接收到的无线信号作为参考电压,同时输入MOA电流信号,经过傅立叶变换可以得到电压基波U1、电流基波峰值Ix1p和电流电压角度Φ。因此与电压同相分量为阻性电流基波峰值(Ir1p),正交分量是容性电流基波峰值(Ic1p):Ir1p=Ix1pCOSΦ Ic1p=Ix1pSINΦ
考虑到δ=90°—Φ相当于介损角,直接用Φ评价MOA也是十分简捷的:没有“相间干扰”时,Φ大多在81°~86°之间。按“阻性电流不能超过总电流的25%”要求,Φ不能小于75.5°,可参考下表对MOA性能分段评价:
实际上Φ<80°时应当引起注意。
接地:
测量前先连接地线,测量完*后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
无线信号:
参考电压信号线一端插入信号发射器的参考电压插座,另一端接被测相PT二次低压输出:小黑夹子接中性点(x),小红夹子接待测相电压(a/b/c)。外施法测量时接升压变压器的测量绕组。如果PT距离较远,可使用加长线。打开信号发射器的电源开关,看到发射信号指示灯频闪即可。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:
在(无线传输)模式,(无线传输同步显示)模式下,需要先把天线拧上,在拧天线时候需要注意力度,不要太紧。主机和信号发射器的天线都拧上才可以。如果信号接收不好,应该把信号发射器放在高处。
4.(单电流同步显示)模式:仅仅需要一根电流线,取到电流信号即可测量出全电流和阻性电流。
电流信号
先将泄漏电流信号线插头插入仪器,后将另一端夹子夹到(或通过绝缘竿搭到)被测相MOA放电计数器上端。试验室内可将无放电计数器的MOA放到绝缘板上,由MOA下端取电流信号。电流信号不能使用加长线。
接线图如下:(图四)
5.注意:在(同步显示)模式下,仅仅IB即绿色电流通道适用。同时,在测试状态下仅仅“确定”和“减小”键适用。而且需要长按有效。
“确定”键 打印数据。
“减小”键 返回初始状态。
四、三相同测
接地:
测量前先连接地线,测量完*后拆接地线!如果接地点有油漆或锈蚀必须清理干净。
参考电压:
参考电压信号线一端插入参考电压插座,另一端接B相PT二次低压输出。
电流信号:
先将泄漏电流信号线插头插入仪器,后将另一端的四个夹子夹到(或通过绝缘竿搭到)A,B,C相MOA放电计数器上端和地端。电流信号不能使用加长线。
五.仪器操作步骤
打开电源开关, 屏幕出现开机界面约几秒后出现如下所示主菜单(图六)。
主菜单的 具体操作说明如下:
线路编号:按“功能”键将光标指向“线路编号”,按“确定”键进入;按“功能”键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。
PT变比:按“功能”键将光标指向“PT 变比”,按“确定”进入;按“功能”键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。
测试相序:按“功能”键将光标指向“测试相序”,按“确定”进入;按“功能” 键选择要调整的位置,此位置下会有一个小光标;按 “增大”、“减小” 键进行选择,所有位调整完成后,按“确定”键。其中 A,B,C 表示单相测量,X表示三相同测.
补偿角度:调整方法同上,一般相间干扰的影响大约在2°~ 5°,由于准确测算干扰量有一定困难,一般不提倡硬性补偿,而是将其设置为 0.0°,可以按规程要求,纵向比较一段时间内数据变化趋势。如果需要调整边相校正角,可参考后面“测量原理”的有关章节.如果选择三相同测,角度自动补偿.
日期:调整方法同上,用“功能”键选择要调整的项目年、月、日、时、分、秒,用“增大”、“减小”键进行调整,全部调整完后,按“确定”键。
模式选择:按“确定”将会在(PT二次),(感应板),(无线传输),(同步显示)四种模式之间切换。
同步显示模式:当选择到 (同步显示)模式下时候,将光标移动到“测试”上,按“增大”键将会显示(PT二次同步显示模 式),(无线传输同步显示模式), (单电流同步显示模式)。
查看:按“功能”键将光标指向“查看”,按“确定”进入(如图七所示);按 “增大、减小、功能” 键选择要查看的数据,按“确定”键显示该组数据;
测量:按“功能”键使光标指向“测试”,按“确定”进入测量,出现图八所示测量画面。
测试完毕,会出现测试结果,如图九所示。
显示: 转换显示画面,显示全部测试信息,或简要显示。如果是三相同测,按“增大”,“减小”可以循环显示三相的信息
打印:可将测量的数据打印出来,但不存储
存储:存储当前数据,选择好数据的存储位置,按“确定”键保存。
退出:退出测量,回到系统主菜单。
随着新能源在我国能源结构中的比重不断上升,新能源将逐步从补充型电源变为主力型电源,能源供给也将从传统单一纵向延伸的集中式能源发展模式逐步演变为集中式与分布式兼容的新能源发展模式,形成具有能源供给主体数量多、生产信息数量大、地理位置分散等特点的电力生产模式。构建以新能源为主体的新型电力系统将推助电力系统向清洁低碳化深入发展,推动可再生能源为主的分布式能源的广泛建设。伴随着能源供给中可再生能源比例上升,去中心化将成为新型电力系统的特征之一。为了促进具有显著间歇性、波动性、随机性特点的新能源进行消纳,降低弃风弃光率,提升去中心化的分布式能源高度自治与协同运行的能力,将成为新型电力系统建设中面临的重要问题。
扬州万宝转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。